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ABSTRACT 

In order to get fur ther  insight on the  Weyl ' s  formula  for the  vo lume of a 

t ubu la r  hypersurface ,  we consider the  following s i tuat ion.  Let  e(t) be a 

curve in a space form M ~  of sectional curva ture  A. Let P0 be a total ly 

geodesic hypersurface  of M ~  t h rough  e(0) and  or thogonal  to c(t). Let 6o 

be a hypersurface  of P0. Let  C be the  hypersurface  of M~ ~ obta ined  by a 

mot ion  of  C0 along e(t). We shall denote  it by C P or C F if it is obta ined  by 

a parallel or Frenet  motion,  respectively. We get  a formula  for volume(C). 

A m o n g  o ther  consequences  of this  formula  we get  tha t ,  if c(0) is the  centre  

of  mass  of  C0, t h e n  volume(C) > volume(CP) ,  and  the  equal i ty  holds when  

Co is conta ined in a geodesic sphere  or the  mot ion  corresponds  to a curve 

conta ined in a hyperp lane  of the  Lie algebra (9(n - 1) (when n = 3, the  

only mot ion  wi th  these  propert ies  is the  parallel motion) .  
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§1. I n t r o d u c t i o n  

The Weyl's formulae for the volumes of a tube around a submanifold P in ~u 

and its correspondent boundary reveal the remarkable qualitative fact that these 

volumes depend only on the intrinsic geometry of P and the radius of the tube 

(cf. [We] and [Grl, page 1]). In [GM], A. Gray and the third author have begun 

the work of understanding the deeper reasons of this fact. They have done it 

completely for the volume of a tube around a curve c(t) in a simply connected 

space form M~' of dimension n and constant sectional curvature A. In this case, 

given a domain :Do in a totally geodesic hypersurface P0 containing c(0) and 

orthogonal to the curve c(t), they have got a formula for the volume of the 

domain :D in M~' obtained by a motion of :Do along the curve c(t) (generalizing 

a classical Pappus formula for the volume, see [GG]). As a consequence of this 

formula, if c(0) is the centre of mass of Do, then volume(I)) depends only on 

:Do and the length of c, like in the Weyl's formula for the volume of a tube. 

This means that,  for volumes of tubes around curves in M~', the only fact that 

really matters for Weyl's formula is that any section of the tube by a geodesic 

hyperplane orthogonal to the curve has its centre of mass on the curve. It is not 

necessary that this section be a geodesic ball of P0, like in tubes. 

To understand the volume of a tubular hypersurface (the boundary of a tube) 

we consider a connected hypersurface Co of P0 with its centre of mass at c(0) and 

compute the volume of the hypersurface C obtained by a motion of Co along the 

curve c(t). Goodman and Goodman ([GO]) have shown that, for curves in R 3, 

the spherical shape of C0 is important. In fact, they show with examples that,  

when Co is not a circle, the area of C depends on the curvature and the torsion of 

the curve. However, in [GM] it is shown (for a general M~) that the role of this 

spherical shape can be overcome when the motion along the curve is parallel. In 

this case, the authors of [GM] have obtained a formula for volume(C) completely 

similar to the formula for volume(D). Nevertheless, the role of parallel motion 

among all the motions is not completely understood, and this is lacking for the 

full comprehension of Weyl's formula for the volume of a tubular hypersurface 

around a curve in M~. 

The aim of this paper is to fill in this lack by achieving a full understanding of 

the role of parallel motion. Concretely, we shall see that: 

(a) Parallel motion gives the lowest value for the volume of a hypersurface 

obtained by a motion along a curve (Theorem 4.1). This result was suggested 

to the authors by figure 3 in [GM]. It can also give a feeling of this result to the 

reader. 
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When the hypersurface Co is connected, compact and without boundary, it 

encloses a domain :Do; then C is the boundary (with the exception of the "top 

and the bo t tom layers") of the domain 7) obtained by the motion of :Do along 

c(t). When c(0) is also the centre of mass of :Do, it follows from [GM, Th. 1] that  

volume(:D) is the same for all the motions. Then our result says that  parallel 

motion encloses the same volume and gives the minimum area, and it can be 

interpreted as an "isoperimetric inequality". 

(b) For any curve, and for a generic motion along the curve (then, not parallel) 

the volume of C depends only on the length of the curve and on Co if and only if 

Co is part  of a geodesic sphere (Theorem 4.4). In the special case of dimension 

n = 3, this holds for every non-parallel motion. 

Another look at the same results: In dimension 3, if C0 is not a circle or a circle 

without one point, the parallel motion is the unique where volume(C) attains its 

minimum. For greater dimensions, the motion giving the minimum is not unique 

for some Co not contained in a geodesic sphere, but the set of motions where the 

minimum is not attained is open and dense in the set of motions along with an 

appropriate topology. 

(c) For a Frenet motion along a generic curve, the volume of C depends only 

on the length of the curve and on C0 if and only if Co is as in (b) (Theorem 5.1). 

The key point for getting these results is a formula for volume(C) valid for 

a general motion. We shall get it in section 3. It  will show that,  in general, 

volume(C) depends on all the curvatures of c(t), in contrast to the general ex- 

pression for volume(:D). The formula in [GM] for volume(C) when C is obtained 

by a parallel motion, and the precise statements of (a), (b) and (c) will be a 

(nontrivial) consequence of this general formula. These statements will be given 

in sections 4 and 5. In the next one, we shall collect some definitions. 

ACKNOWLEDGEMENT: We thank F. J. Carreras for some discussions on parts 

of this paper  and J. J. Nufio who kindly showed us how to prove that  condition 

(5.1) on curves is generic. 

§2. P r e l i m i n a r i e s  

Throughout this paper, c : I = [0, L] ~ M~ will denote a C ~ curve paramet-  

rized by its arc-length t. We shall suppose that  c is an embedding from [0, L] 

into M~ if c(0) ¢ c(L) or induces an embedding from S 1 into M~ if c(0) = c(L). 
We say that  a n  o r t h o n o r m a l  f r a m e  {el(t) = c'(t),e2(t),...,e~(t)} is 
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para l l e l  if 
D -~ej(t)=O, for 2 < j  < n, 

where D is the normal connection on the normal bundle of c (that is, Dej(t) is 

the component of Vej(t) normal to c'(t)). 
For every t E [0, L], let Pt be the complete totally geodesic hypersurface of 

M~' through c(t) and orthogonal to the curve c. It will be called the geodes ic  

h y p e r p l a n e  t h r o u g h  c(t). In this paper, any totally geodesic submanifold of 

M~' will be called a geodes ic  subspace .  

A m o t i o n  a long  c a s soc i a t ed  to  a s m o o t h  o r t h o n o r m a l  f r a m e  {El(t)  = 

c'(t),E2(t),...,En(t)} a long  c(t) is the family (I) := {¢t: Po --+ Pt}te[O,L] of 

diffeomorphisms defined by 

(2.1) Ct exp,(0) #iEi(O) = exp,(t) #iEi(t). 
i=2 i=2 

From this definition it follows that Ct,c(0)E~(0) = E~(t); then 

(2.2) ~t := tt,c(0): Tc(o)Po ~ T~(t)Pt 

is an isometry and, for every # E {cI(0)} ±, tt(expc(0 ) #) = expc(t ) ~t#. 

Moreover, it follows also from (2.1) that tt takes geodesics of P0 through c(0) 

into geodesics of Pt through c(t). Then, since tt.c(0) is an isometry and P0 and 

Pt are space forms with the same sectional curvature A, it follows from Cartan's 

Theorem ([dC, page 156]) that ¢~: Po ~ Pt is an isometry. 

A curve c(t) in M~' with {c1(t), ,c'(t),...,c(n-l)(t)} linearly independent at 

every t has a unique Frenet frame {fl(t) = c~(t), f2(t),..., fn(t)}, satisfying the 

well known Frenet equations (cf. [GM] or [Sp]). Many curves that do not satisfy 

this property have still a (not unique) frame satisfying the Frenet equations, and 

it will also be called a Frenet frame. On this paper we shall suppose that all 

the curves that we consider have a Frenet frame. 

A Frenet motion is a motion associated to a Frenet frame of c (according 

to the above remark, it is unique only on curves not contained in any geodesic 

hyperplane). It will be denoted by (b E = {¢F}, and ~ff -- cgc(0). 

A para l l e l  m o t i o n  is a motion associated to a parallel frame along c; it is 

unique along any given curve. It will be denoted by • v = {eft}, and ~g = ¢P¢(0)" 

The symbol (i) will denote the usual derivative for a function from ]R to ]R, the 

tangent vector for a curve in M~, and the covariant derivative for a vector field 

along a curve. 
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For every A C ~, s~: R -+ ]~ will denote the solution of the equation s ' +  As = 0 

with the initial conditions s(0) = 0 and s'(0) = 1; and c~ = s~,. 

Let F be an oriented totally geodesic hypersurface of M~ -1 with unit normal 

vector field ~; let o E F. For every x c M~ -1, let "Yx be the unique minimizing 

geodesic joining o and x, with %(0) = o. Let r: M~ -1 ) R be the function 

defined by r(x) = dist(o, x). 

Given a submanifold B of M~ -1, with compact closure, we define t h e  m o m e n t  

Mr(B)  o f  B r e s p e c t  to  F by the integral 

Mr(B)  = ft3 s~(r(x))(~/~(O)' ~o)a, (2.3) 

where a is the volume element of B. Elementary formulae for geodesic triangles 

prove that  Mr(B) does not depend on o (ef. [GM]) 

We say that  a point o C M~ -1 is t h e  c e n t r e  o f  mass  of  B if Mr(B)  = 0 

for every oriented totally geodesic hypersurface F through o. This definition 

coincides with that given in [He], but it is slightly different from the usual one 

(cf. [Za] or [BK]), where the centre of mass of B is the point where the function 

F: p ~-~ fz  dist(p, x) 2 dx attains its minimum. This is also true for our definition 

if $ = 0. However, if ~ # 0, the function F has to be changed by 

.P: p ~ - ~  ]~ cx(dist(p, x)) dx. 

With this small change, the arguments in [Ka] or [BK] to prove the existence and 

uniqueness of the centre of mass (with B contained in a ball of radius _< 7r/4v/~ 

if A > 0) still work here. 

Given the motion • = {¢t: Po - -+ -Pt}te[O,L] along c associated to {E~(t)}~_l, 

we shall denote by U0 an open set of P0 such that U = Utci Ct(U0) is the image 

by exp of an open set of the normal bundle of c on which exp is a diffeomorphism. 

From now on, 

Co will denote a c o n n e c t e d  a n d  e m b e d d e d  h y p e r s u r f a c e  of P0 with 

compact closure, and satisfying Co C U0; 

for any motion {¢t}, Ct = Ct(C0) and C = Ute[0,L] Ct. C is called t h e  h y p e r -  

su r face  o b t a i n e d  by  t h e  m o t i o n  {¢t} o f  Co a long  c; 

E F and C P will denote, respectively, the hypersurfaces obtained by a Frenet or 

parallel motion of Co along c. 

It will be clear from the proofs that  our main theorems will also be true for 

immersed hypersurfaces. 
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§3. T h e  m a i n  f o r m u l a  

Before we s ta te  and prove the main  formula we shall recall t ha t  the cross vector  

p roduc t  of n - 1 vectors X 1 , . . . ,  X, , -1  in an oriented Riemannian  manifold M of 

dimension n with volume form w is given by 

(Zl A . . .  A Xn-1, u) = w(Xl , . . . ,  Xn-1, u) for any vector  u. 

Given a point  x0 E Co, and a mot ion  • along c(t), we shall use the following 

notat ion:  

z t  = ~ t ( z o )  ~ Ct; 

7x~ is the unique minimizing geodesic joining e(t) and xt, with 7x, (0) = c(t); 

N(t) = 7'~(0) is its tangent  vector  at  e(t); 

~-t is the  parallel  t r anspor t  along 7 ~  f rom c(t) to xt, 
~t is the unit  vector  in T~Pt orthogonal  to Ct ( then ~t = Ct.~o~O); 

Ndt  ) = (N( t ) ,  f i ( t ) ) ;  and 

r(xt) = dist(c(t) ,  xt) ( then 7 ~  (r(xt)) = xt). 

THEOREM 3.1: 

volume(C) = 

where ~h is the volume element of Or. 

Proof: Let ¢:  ]0, L[xCo ---+ C be the diffeomorphism defined by 

¢(t, xo) = expc(t) ~vt(tt) with Xo = exp4o ) it. 

Let { e 3 , . . . , e n }  be an o r thonormal  basis of TxoCo and let 71o and ~/ be the 

volume elements  of Co and C, respectively. Using the propert ies  of  the cross 

vector  product ,  

o 
, 0  y(  ¢,-~,  ¢,e3,. . ., ¢,en)dt A ~lo ¢*~ /=  ¢ 7)(~,e3 , . . . ,en)dtAT,o= 

= ¢ , a - - - A ¢ , e 3 A  . .A¢ ,en  dtA~lo. 
Ot 

Then  the volume of C is 

(3.1) 
volume/C/ / /0L/ o 

= ¢ ,  A¢,e3A...A 70 dt. 
0 
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To compute the integrand of (3.1), first we observe that 

0 d d 
¢ .  ~ -- dt~b(t, expc(o) #) = ~ expc( 0 ~ot(#) 

is the Jacobi field Y1 along %, at r = [#[, computed in [GM, (13)], given by 

(3.2) ¢ ,  ~ = Yl(r) = c;~(r)~-tfl (t) + s),(r)% , f l  f l  + - ~ -  • 

Let c~(,) be a curve in Co such that c~(0) = p, 4(O) = ~ ;  then 

(3.3) ¢.ei = ~od ,=o¢(t, ci(s) ) = ~od , :o  Ct(ci(s)) = C,.~(o)ei  

with { g a , - - . , ~ }  an orthonormal basis of T¢~(~o)gt, since Ct is an isometry. 
Moreover, using the cross vector product in Pt, we have 

(3.4) ~ t - - - - ~ 3 A ' " A ~ n - n 6 T x t P t -  

Therefore, from the expressions (3.2) and (3.3), we obtain 

0 
(3.5) ~b ,~  A~b, ea A - . .  A¢,en  = Y 1 A ~ A  ...A~-n. 

Furthermore, Tc(t)Pt is generated by { f2 ( t ) , . . . ,  fn (t) }; then Tx, Pt is generated 
by {rtf2(t) = f2 ( t ) , . . . ,  rtf,~(t) = fn(t)}, which is a positively oriented orthonor- 
real basis. We shall use it to compute the cross vector product in Pt with formula 
(3.5). We shall denote by ~ ,  2 < j _< n the components of ei in this basis. 

Using the expression (3.2) for Yl(r), and the basis {fl(t) ,  f2 ( t ) , . . . ,  f,~(t)} to 
compute the cross vector product in M~, we get 

=(-1)n-1 

Y1 A ~ A " ' A ~ n  
k 

0 

=(_1)'~-~ 

0 

A "'"  A 

N a . . -  e - ~  

e n - . . e n 

~ 2  , . .  ~-7~ 
n 

A - f,~ 

l e ~  2 . . .  e ~  ~ 



212 M. CARMEN DOMINGO-JUAN ET AL. 

~ ' ~ }  
D N  ~-~2 

= -  (_1),~-2 Ttd-t-' . . . . . . . . .  3 "'" 3 s~(r) -ill 

Then, recalling (3.4) and using 

V N - -  

Isr .  J .  M a t h .  

= - ( N ,  k~f~) - k~{N, f2) = -k~N2, 

we obtain 

(3.6) ]Ix A N A . - . / X ~  = - rt~-~-,(t s~(r) ~ + (c~(r) - s~(r)N2(t)kl(t))(t. 

So, if we substitute (3.6) in (3.1), we obtain 

v o l u m e ( d )  = IY1/~/~...A~I ~o dt 
o 

= f o L ( f c o ~ ( T t ~ t  ( t ) ,~t)2sx(r)2+(cx(r)-sx(r)N2(t)kl ( t ) )2~o)  dt; 

and the formula of the theorem follows taking into account that the Ct are 

isometries. | 

Remark: With the convention that Nj -- 0 -- kj if j • {1 , . . . ,  n),  N~ = 0 and 

k,~ -- 0, in [GM] the following formula is given: 

n 

(3.7) ~--~' (t) = E ( N ~  -- Ni+lki + Ni-lki-1)(t) f i( t) .  
i = 2  

Then, in general, all the curvatures of c appear in the formula for volume(C), a 

situation very different from that  of the volume of a domain. This dependence is 

real, and not a defect of the formula, as can be checked taking helices in ]R 3 with 

the same curvature and different torsion. 

§4. T h e  ro le  of  m o t i o n s  

THEOREM 4.1: Let do be a hypersurface with centre of mass at c(O). Then 

(4.1) volume(C) >_ volume(C P) = L f c~(r) 71o. 
d Co 
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Proof: Since Ct is an isometry, 

~c c~(r)~t  = ~  c~(r)~o. 
t o 

Let us denote by Mr,(Ct) the moment of Ct with respect to the geodesic hy- 

perplane Ft of Pc through c(t) orthogonal to f2(t). From Theorem 3.1 and the 

definition (2.3), it follows that 

volume(C) >- /oL ( / c  c~(r) ~h- fcts~(r)N2(t) kl(t) ~h} dt 
(4.2) 

= L ca(r) 7o - Mr,(Ct) kl(t) dt. 
o 

But, since Ct is an isometry and c(0) is the centre of mass of Co, then c(t) is 

the centre of mass of Ct = Ct(C0), and Mrt(Ct) = 0. On the other hand, it is 

obvious that (4.2) is an equality for a parallel motion, which gives the equality 

in (4.1). Then, the inequality in (4.1) follows. | 

After proving Theorem 4.1, a problem of uniqueness arises: Is parallel motion 

the only one giving the minimum of volume(C) for a given Co? If Co is a geodesic 

sphere of P0, then C is a tube around c(t), and Weyl's tube formula says that all 

motions give the same value for volume(C); then the above question has to be 

modified by restricting Co not to be a geodesic sphere. Another viewpoint of the 

same question is the following: 

When we look at the proof of Weyl's formula for the volume of a tubular 

hypersurface, a prominent role is played by the fact that we have to integrate 

along the spheres which are the normal section of the tube. Theorem 4.1 says 

that this role disappears when we consider parallel motions along a curve. Is this 

the unique motion producing this phenomenon? 

In the next theorem we shall give an answer to these questions. We shall see 

that parallel motion is unique with the above properties when n = 3 and that,  

for n >_ 4, the special role of spherical sections is played on a generic motion. 

To state the theorem we shall need two lemmas. The first is well known and 

we shall omit the proof. The second is the crucial technical remark from which 

we shall get the results. 

LEMMA 4.2: If V~o(r(xo)) ---- +~o for every xo E Co, then Co is contained in a 
geodesic sphere of Do with centre at c(0). 

If n -- 3, then Co is a geodesic circle, perhaps without one point. If Co is 
compact without boundary, then, for any dimension n > 3, Co is a geodesic 
sphere of Po. 
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In the next  l emma  and other  results, we shall usually conclude tha t  Co (if it 

is not closed) is a circle perhaps  wi thout  one point  in case n = 3, but  for n > 3 

we shall only conclude tha t  Co is contained in a sphere. The  reason for this is 

tha t  a connected subset  of a circle has a centre of mass  which coincides with the 

centre of the circle only if the complement  is at  most  one point,  while for higher 

dimensions there are m a n y  different subsets with their  centre of mass  a t  the 

centre of the sphere. These subsets m a y  not even be centrally symmetr ic .  The  

simplest  ones are tubes  around suitable pieces of total ly  geodesic submanifolds.  

LEMMA 4.3: Let Co be a hypersurface with centre of  mass  a t  c(0). Let ~2 := 

{¢t}te[O,L] be a motion along c such that, for every xo e Co (i.e., for every 

N(0)  = 7~0(0)), there are n - 2 points  t2 , . . .  ,t,~_l such that 

1DN. .  
(4.3) the vectors ~ - -~ - ( t i ) ,  2 < i < n - 1, are linearly independent. 

I f  volume(C) = volume(CP),  then Co is contained in a geodesic sphere of  Po with 

centre at c(O). 
I f  n = 3, then Co is a geodesic circle, perhaps without one point. I f  Co is 

compact without boundary, then, for any dimension n >_ 3, Co is a geodesic 

sphere of  Po. 

Proof: From the proof  of 4.1, it is obvious tha t  the equali ty volume(C) = 

volume(C P) holds if and only if 

D N  
(4.4) (Tt--~-( t ) ,~t}  = O. 

Since ~bt are isometries,  we have 

-1 ~ ~ 0 } = 0  2 <  n -  ¢ti*xo t~ D N  - - ~ -  (ti), for i < 1. 

From this equality, the hypothesis  on the motion,  and f rom the facts tha t  

1 D N  
~ t  ( t i ) ,N( t i )}  (¢~ ,xoTt -~- ( t i ) ,7 :o(d is t (xo ,  c(O)))} = ( ----0 

1 D N . .  
and ¢~,~oTt,--~-(ti) E TxoPo, 

we get t ha t  •o(dis t (xo,  c(0))) = +~o, and the thesis follows from L e m m a  4.2. 

| 

Now we make  some remarks  abou t  the mot ion  along a curve. 
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Recall tha t  (I)P denotes  the parallel mot ion  along a curve c in M~.  Given any 

mot ion  (I) along c, we consider the maps  

A(t) = (~og) - i  o ~t: TKo)Po ) T¢(o)Po, 

which define a C~¢-curve t ~-~ A(t) in the Lie group SO(n - 1) of isometrics of 

T4o)Po preserving the orientat ion,  because ~ P  and ~t are isometrics and A(0) = 

Id. This  allows us to identify the mot ions  along c: I ~ M ~  with the curves 

A: I - - +  SO(n - 1). Then  we can give an in terpre ta t ion  of the condit ion (4.3) in 

te rms  of the curves A(t). 

A simple compu ta t ion  shows tha t  

1DN DN (t. A-I(t)A'(t)N(O). - j i - ( t )  - -  o o ) : 

Then,  condit ion (4.3) is equivalent to 

(4.5) A-l( t i )A ' ( t i )N(O),  2 < i < n -  1, are linearly independent .  

Moreover,  on a neighbourhood of Id = A(0) • SO(n - 1), the inverse of the 

exponent ia l  m a p  ln:  SO(n - 1) - - +  O(n - 1) f rom SO(n - 1) to its Lie algebra 

O(n - 1) is well defined. Then,  there is a ne ighbourhood of 0 in [0, l] on which 

we may  write A- l ( t )A ' ( t )  = (ln A) ' ( t ) ,  and this allows us to state:  

THEOREM 4.4: Given a motion @ = { ¢ t } t e I  along a curve c(t) in M~, let A(t) 

be the associated curve in SO(n - 1). Let a(t) = In A(t), which is well defined 

on a neighbourhood of O. Let us suppose that the curve a(t) is not contained in 
any hyperplane of O(n - 1). If  volume(C) = volume(CP),  then Co is contained 

in a geodesic sphere of Po. 

I f  Co is compact without boundary, then, for any dimension n _> 3, Co is a 

geodesic sphere of Po with centre at c(O). 

Proof'. From L e m m a  4.3 and the above remark,  it is enough to  show tha t  the 

assumpt ions  of the theorem imply the existence of points  t 2 , . . . ,  tn-1 satisfying 

the condit ion (4.5) for every N(0) .  But ,  if there are no such points,  there is a g ( 0 )  

such t ha t  the biggest integer k such tha t  there are a ' ( t 2 ) N ( 0 ) , . . . , a ' ( t k ) g ( 0 )  

l inearly independent  is ~ n - 2. Then,  for every t • I, a'(t)N(O) is a linear 

combina t ion  of a ' ( t 2 ) N ( 0 ) , . . . ,  a'(tk)N(O); so the curve a( t )g (o)  is contained in 

an affine subspace of Tc(o)Po of dimension k - 1 <_ n - 3. Therefore,  for every t, 

the vectors a ' ( t ) N ( 0 ) , . . . ,  a(k)(t)N(O) are l inearly dependent .  
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Let us write the matrices of O(n - 1) using an orthonormal basis of Tc(o)P0 of 

the form {N(0), e2 , . . . ,  e~- l} .  Let us identify O(n - 1) with R( ~-1)(n-2)/2 by 

l0 a23 a 2 3  0 • • • - -  n 

• . .. ~ (a23, . . . ,a2n,  a 3 4 , . . . , a n - l n ) ;  

\ a 2 n  a 3 n  • .  • 

then a(t)N(O) = (O, a23(t) , . . . ,a2n(t))  can be considered as the image 

(a23(t) , . . . ,  a2n(t), 0 , . . . ,  0) of a( t )  by the natural  projection ~r from R ('~-1)(~-2)/2 

onto the subspace R ~-2 × {0}. Then, the condition written in the above para- 

graph says that  the projection of the curve a( t )  on the (n - 2)-plane R ~-2 × {0} 

has its first k < n - 2 derivatives linearly dependent; so this projection is a curve 

contained in a (n - 3)-dimensional subspace H, therefore c~(t) is contained in the 

subspace r - l ( I I )  = H x ~(n-2)(n-3)/2 of dimension < ((n - 1)(n - 2)/2) - 1, 

contradicting the assumptions• | 

COROLLARY 4.5: I f  n = 3, and C is obtained by a motion q~ of Co along a curve 

c(t), with c(O) the centre of mass of Co, volume(C) = volume(C P) implies that 

is a parallel motion or that Co is a circle, perhaps without one point. 

Proo~ If  n = 3, O(n - 1) = 0(2)  is isomorphic to R. Then, the condition on 

c~ is just that  it not be the constant map 0; but this means that  A(t) is not the 

constant map Id, that  is, that  ~t ¢ ~P, i.e., that  • is not a parallel motion, as 

claimed• | 

Remark 4.6: The family of C ~ curves A(t) in S O ( n - l )  satisfying the conditions 

of Theorem 4.4 is generic, that  is, it contains an open and dense set in the family 

of C ~ curves in S O ( n - l )  with the Whitney 's  topology. It  can be proved following 

standard arguments (cf. [NB, Th. 2.1], [Hi, pages 60 and 80] and [Wa, page 758])• 

Remark  4.7: When n = 3, Theorem 4.4 says that  parallel motion is unique 

giving the minimum of volume(C) if Co is not contained in a geodesic sphere. 

When n >_ 4, we lose uniqueness, and the best result that  we may have is the 

genericity of the motions which do not give the minimum• In fact, the following 

is an easy example showing that  the hypothesis of Theorem 4.4 on the motion is 

necessary. 

In R n , let Co be the cylinder S p-2 × J'~-P of Tc(o)Po with centre at e(0), where 

J =] - e, c[ and S p-2 is a euclidean sphere of radius e, with c small enough in 

order that  Co be contained in the open set U0 defined at the end of section 2. 
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Let R(t)  be a non-constant smooth curve in S O ( p -  1) such that R(0) = Id. 

Let E2(t), . . . ,  E~(t) be a D-parallel frame along c(t) such that E2(0) , . . . ,  Ep(O) 

generates the ( p -  1)-dimensional subspace of Tc(o)Po where S p-2 is contained. 

We define the motion (I) by 

f R( t )Ei( t )  i f 2 < i < p ,  
~t(Ei(O)) = [ Ei(t) if p +  1 < i < n. 

The unit vector ~0 at (u, a) E S p-2 × j n - p  is ~0 = u/e, and 

6 = 1R(t)u. 

The vector g ( o )  corresponding to (u, a) is N(O) = (u, a ) / v / ~  + lat2; then 

O N ( t )  _ D~tN(O) _ D gi (O)R( t )Ei ( t )  + gi(O)Ei( t )  
dt dt dt . i=2 i=p+l 

1 
- 

V/~ + lal 2 

So 

= o. 

Therefore, volume(C) = volume(C P) for this Co, which is not contained in a 

sphere of Tc(o)Po. 

§5. T h e  ro le  o f  cu rves  

In this section we change the viewpoint. Instead, to consider a curve and to 

study the family of motions along it, we consider a motion well defined along a 

curve (a Frenet motion) and study this motion along a family of curves. 

THEOREM 5.1: Let c(t) be a curve in M~ such that 

(5.1) the functions k2( t ) , . . . ,  k n - l ( t )  are linearly independent. 

Let Co be a hypersurface of Po with centre of mass at e(O). I f  volume(C F) -- 

volume(CP), then Co is contained in a geodesic sphere of Po with centre at c(O). 

I f  n = 3, then Co is a geodesic circle (perhaps without one point). I f  Co is 

compact without boundary, then, for any dimension n >_ 3, Co is a geodesic 

sphere of Po. 

Proof: It will be enough to see that,  for a Frenet motion, if volume(C F) = 

volume(CP), then the conditions (5.1) and (4.3) are equivalent. 
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Let us denote 

n 

v(t) := E(-Ni+l(O)ki(t) + Ni_l(O)ki_l(t))-fi(O ). 
i=2  

For a Frenet motion we have Ni(t) = Ni(0) and N[(t) = 0. Then, it follows from 

(3.7) that  condition (4.3) is equivalent to the existence of n - 2  points t 2 , . . . ,  t ~ - i  

satisfying 

(5.2) the vectors v2 := v ( t2 ) , . . . ,  v,~-I := v(t,-1) are linearly independent. 

Then the theorem will be proved 

volume(C F) = volume(OR), (5.1) is equivalent to (5.2). 

Condition (5.2) is equivalent to the rank of the matr ix  

-N3k2(t2) ... -Ni+lki(t2) + Ni-lki-l(t2) ... 

\-Nak2(tn-1) -gi+lki(t~-l) + Ni-lki-l(t .-1) ... 

being n - 2. 

once we see that,  under the condition 

Nn-lkn-l(t2). ) 

Nn-lkn-l(tn-1) 

But if we compute the minors of this (n - 2) x (n - 1) matrix, we obtain that  

all of them are, up to the sign, of the form 

k~(t2) 

Ni, ... Ni,_2 
k2(t~-l) 

• . .  k n - l ( t 2 )  

. . .  k~_l(t~_l) 

Then, except for the points where Ni = 0 for some i E {2 , . . . ,  n}, the condition 

(5.2) is satisfied if and only if 

k2(t2) 

(5.3) 

k._1(t2) 

k . - l ( t . - 1 )  

¢ 0 .  

Then we have proved the equivalence between (5.3) and (5.2) except for the 

points with N~ = 0 (let us recall that  N(0) = ~ o  (0), then N(0) depends on x0). 

We claim that  in every neighbourhood of one of these points, there is a point 

with Ni ¢ 0 for every i E {2 , . . . ,  n}. In fact, if Ni = 0 at x and there is an open 

neighbourhood U of x such that  for every y C U there is some i such that  N~ = 0 

at y, that  is, U is contained in a union of coordinate geodesic hyperplanes of P0- 

Then there is a point z E U with a neighbourhood Uz C U which is an open set in 

some geodesic hyperplane Ni = 0 (if not, U will be contained in the intersection 
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of two or more hyperplanes, then it will not be an open set of a hypersurface of 

Po). Then, we may take U~ connected and with no intersection with the geodesic 

hyperplanes Nj = O, 2 < j ~ i. Since Uz c Co, ~o is a u n i t  vector normal to 

U~, and, since Uz is contained in the geodesic hyperplane Ni = 0, f i (0)  is also 

orthogonal to U~, in which case 

(5.4) on Vz, ~o = L(O). 

Let us see that this is not compatible with the condition (5.1). In fact, if (5.4) 

holds, then, using again (3.7), Ni(t) = Ni(0), and the condition (4.4) (equivalent 

to volume(C F) -- volume(CP)), we get 

0 / = T r - - ,  = \ - ~ , f ~ ( t ) / - - - - - N i + l ( O ) k i ( t )  + g~-l(O)ki-l( t) .  

But, since Uz is open in Ni = 0, there is a y e Uz satisfying Nj (y) ¢ 0 for every 

j ¢ i; so at this point, (5.5) contradicts the hypothesis (5.1). Hence our claim is 

proved. 

The equivalence between (5.2) and (5.3) proves, according to the proof of 

Lemma 4.3, that 

(5.6) ~/~o (dist(x0, c(0))) = ±~o 

holds except for the points with Ni = 0. Then, by continuity, the equality (5.6) 

holds everywhere, and we have that condition (5.3) implies that Co is contained 

in a geodesic sphere of Po with centre at e(0). 

Now, we shall finish by showing that (5.3) is equivalent to (5.1). In fact, (5.3) is 

equivalent to the linear independence of the vectors ~ = (k i ( t2) , . . . ,  ki(tn-1)), 
2 < i < n - 1. By the continuity of the functions ki(t), this is equivalent to 

condition (5.1). | 

It follows from this theorem that, in case n = 3, volume(C F) = volume(CP), 

for a Frenet motion along a curve c(t) not contained in a plane implies that Co 

is a circle of P0. For n = 4, the analogous statement occurs when the quotient 

k3/k2 is not constant. 

Remark 5.2: Again, the family of curves satisfying (5.1) is generic. 

Remark 5.3: Condition (5.1) of Theorem 5.1 is necessary. It is easy to find ex- 

amples of Co not contained in a geodesic sphere of/90 and such that  volume(C F) = 

volume(C P) when e(t) does not satisfy (5.1). For instance, in ]R a, let c(t) be any 

a N curve with k3/k2 = k constant. Then, for any N(t)  = ~F(N(0))  = ~ i=2  il l(t) ,  

D N  
dt (t) = k2 { -N3fz ( t )  + (N2 - kN4)f3(t) + kN3f4(t)}.  
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Let Co be defined as the set of points in Po satisfying an equation of the form 

g ( x , y , z )  = e, where x , y , z  are the coordinates of Po in the basis f2(0), f j(0),  

f4(0). We take e small enough in order to have Co intersected with a ball of P0 

with centre at c(0) of adequate radius, not empty, and contained in the open set 

Uo described at the end of section 2. We shall still denote by Co this intersection. 

In this situation, condition (4.4) is equivalent to 

Og Og Og 
+ (x - kz)  + ky z = o. ~ Y ~ 

Among others, a solution of this equation is 

1 
z) = y2 + 1_7_V( x _ kz)2  

which defines a cylinder Co in Po satisfying volume(C F) = volume(C P) because 
(4.4) holds. 
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